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NOTES 

1. ViSTA cellular automaton model 

The Vegetation and Sediment TrAnsport (ViSTA) model consists of two interacting 

coupled modules: (i) a vegetation model (Module 1) that simulates vegetation growth, 

and (ii) a sediment transport model that moves sediment across the model domain 

according to spatially varying wind speeds (Module 2).  

 

1.1. Vegetation growth (Module 1) 

The vegetation module consists of an adapted version of Bailey’s (2011) CA model 

for simulating semi-arid vegetation. Seven factors govern a cell’s probability of 

survival (if it is vegetated) or probability of being colonised by a plant: (i) 

neighbourhood effects; (ii) response to precipitation; (iii) cell biomass; (iv) cell age; 

(v) sediment balance (i.e. plant response to sediment erosion/deposition); (vi) 

grazing; and (vii) fire. Most plant dependencies in the model are formulated as a 

function of arbitrary growth units; these dependencies are parameterised using 

empirical data where available. Biomass (!) controls the strength of competitive and 

facilitative interactions between neighbouring plants. Individual plants move along 

nonlinear ‘growth pathways’ more or less rapidly, depending on the harshness of the 

surrounding growth conditions.  
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The neighbourhood of a given cell is defined by five concentric shells in an extended-

Moore neighbourhood (i.e. a two-dimensional lattice composed of a central cell and 

the 120 cells that surround it). Each shell is assigned a competition coefficient ("#), 

with positive values representing net facilitative effects at close distance (shells 1 and 

2), negative values representing net competitive effects (shells 4 and 5), and zero 

being neutral (shell 3). Changing the grid cell size within a realistic range (10-1–101 

m) does not significantly affect shell interactions and thus model behaviour (see also 

Mayaud et al., 2017). The modelled facilitation strength grows monotonically with 

plant biomass (!), from zero to a maximum at full biomass maturity (!$%& ), and 

remains constant thereafter. Modelled competition rises monotonically with biomass 

until !$%&, and then reduces as biomass increases past !$%&. Smaller plants in the 

model benefit more from facilitation than larger plants. Cells are at their most resilient 

and sensitivity to competition reaches a minimum when plants reach !$%&; beyond 

this, sensitivity to competition rises again. 

The biomass-dependent contributions from all the occupied cells in a given cell’s 

neighbourhood are summed and combined with stress from incoming precipitation, 

(', mm), to give a total neighbourhood score (T) at each time-step: 

) = +#,-"#./(#,-)

#×3
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Equation 1 

where +#,- is the value of the =th cell in the >th shell (+ = 1 for an occupied (live) cell 

and + = 0 for an unoccupied cell); "# is the competition/facilitation coefficient of shell > 

(> = 1…5);  .9 is the competition strength (< 0); ./ is the facilitation strength (> 0); 79 

is the sensitivity to competition (≥ 0); 7/ is the sensitivity to facilitation (> 0); and '< is 

the precipitation stress imposed globally on the system (see Equation 1). In the case 

of .9 , ./ , 79  and 7/ , whose values depend on plant type, the form of the normal 

distribution is used in the definition of the biomass-dependence. The function ? !  

describes a standard normal distribution:  
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The function ? !  forms the basis for .9, ./ and 79: 

.9 ! =

	60? ! ,															(LM+77)

	240? ! ,												(7ℎMQR)

	380? ! ,															(UMVV)

 

Equation 3 

./ W =

	60? W ,															(LM+77)

	240? W ,													(7ℎMQR)

	3800? W ,														(UMVV)

 

	W =
!,														! ≤ !$%&

!$%&,							! > !$%&
 

Equation 4 

79 ! =

	1 − 54? ! ,														(LM+77)

	1 − 216? ! ,												(7ℎMQR)

	1 − 342? ! ,															(UMVV)

 

Equation 5 

7/ ! =

	1 + 2V
H].6]3;_

,												(LM+77)

	1 + 2V
H].]`5a_

,												(7ℎMQR)

	1 + 2V
H].]6a]`_

,													(UMVV)

 

Equation 6 

where b  and c  are the peak position and width parameter respectively in ! , and 

differ according to plant type (grasses: b  = 60, c  = 24; shrubs: b  = 300, c  = 96; 

trees: b = 480, c = 152). 

The precipitation stress ('<) is defined as: 

'< = d.
' −	'$#e

'$#e
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Equation 7 

where '$#e represents the precipitation level that has neither an added beneficial nor 

detrimental effect on a plant, and d is a scaling parameter. Different precipitation 

stress relationships are assumed for grasses, shrubs and trees (for grasses, '$#e = 

180 mm yr-1 and d = 1; for shrubs,	'$#e = 200 mm yr-1 and d = 1; and for trees, '$#e 

= 500 mm yr-1 and d = 0.8). 

The ) score is normalised to the range 0–1 (asymptotic at very high and very low 

values of '<), giving the normalised adjacency score, ): 

) =
1

1 + VH:f
 

Equation 8 

A precipitation response lag (Wand, 1999) is introduced by using ) to determine the 

proportion of a theoretical growth unit by which all plants can grow over a given 

iteration. A monthly growth gain unit (ghi#j) increases monotonically from -0.05 (at ) 

= 0) to +1 (at ) = 1): 

 

ghi#j =
1.05

1 + VHkl(fHfmno)
− 0.05 

Equation 9 

where the .5  parameter determines the steepness of the curve (.5  = 15 in the 

present model) and )$#e  is the value of the sigmoid’s midpoint ()$#e  = 0.4 in the 

present model). In this way,	ghi#j  can in some instances be negative, reflecting a 

plant losing biomass in particularly harsh conditions. 

The cumulative growth (g9h$ ) of a plant, which is used to determine the actual 

biomass (!) this represents along its growth pathway, is calculated as: 

g9h$ = ghi#j

#jpq

#45
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Equation 10 

If the vegetated cell dies, its cumulated growth returns to zero. The growth pathway 

is formulated as a logistic curve (cf. Erickson, 1976): 

! = 	
!$%&

1 + VHkr(stumHsmno)
 

Equation 11 

where !$%& is the maximum biomass a plant can achieve over its lifetime (equivalent 

to full age maturity in months), g$#e is the value of the sigmoid’s midpoint, and the .6 

parameter determines the steepness of the curve (grasses: g$#e  = 25; .6  = 0.14; 

shrubs: g$#e = 130; .6 = 0.025; trees: g$#e = 210; .6 = 0.016). 

A plant’s biomass ! is converted into an equivalent vegetation height (ℎ): 

ℎ = 	ℎ$%&

!

!$%&
 

Equation 12 

where ℎ$%&  is the maximum height (m) to which a plant can grow. The resultant 

value of ℎ for each grid cell is exported to Modules 2a and 2b to determine wind 

speed patterns and sediment transport rates across the model domain. 

For each cell, the stress from its neighbourhood and from precipitation is combined 

with other stresses (due to accumulated drought (v< ), due to age (w< ), due to 

sedimentation balance (xVy< ), due to grazing (g< ), and due to fire (z< )), which 

themselves depend on plant type. These various stresses are described below. The 

total compound stress determines a given plant’s likelihood of dying, and thus being 

replaced by a new plant. 

When )  < 0.5 (Equation 8), a given plant experiences a period of generally 

unfavourable conditions, which for the purposes of this model is termed a ‘plant 

drought’. The severity of a plant drought is proportional to the number of consecutive 

(unbroken) months where ) is lower than 0.5, and is a function of plant type and the 

magnitude of ). The consecutive number of plant droughts (v9{i) is given by: 
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v9{i =

0.5 − )	

0.5
,				) 	< 0.5

0																			,				) 	≥ 0.5

 

Equation 13 

The stress that a plant experiences due to drought (v<) is an exponential function of 

v9{i:  

v< = 1 − V
H~�tÄÅ 

Equation 14 

where R controls the saturation rate of the exponential and is dependent on plant 

biomass. 

Stress due to age (w<) is given as: 

 

w<(Ç) =

0.2 − 12? Ç

5
,				Ç ≤ 60

1 − 120? Ç

5
,					Ç > 60

																							(LM+77)

0.2 − 48? Ç

5
,				Ç ≤ 300

1 − 240? Ç

5
,					Ç > 300

																						 7ℎMQR

0.2 − 76? Ç

5
,				Ç ≤ 480

1 − 480? Ç

5
,					Ç > 480

																							(UMVV)

 

Equation 15 

where  Ç = cell age and Ç ≥ 1 for occupied cells. 

The sediment-balance stress (xVy< ) is calculated as a function of sedimentation 

balance (annual equivalent, in m) for each vegetated grid cell. These are partly 

based on the elementary growth functions presented by Nield and Baas (2008). 

There is much debate as to the most appropriate sediment-balance/growth curves for 

ecogeomorphic modelling, partly because relevant ecological studies tend to focus 

on detailed physiological measurements that may not be useful for geomorphology 

(Barchyn & Hugenholtz, 2015). For instance, contrary to Nield and Baas (2008), 
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models by Duran and Hermann (2006) and Barchyn & Hugenholtz (2012) do not 

include growth stimulation in their sedimentation response curves. Barchyn & 

Hugenholtz (2015) define a ‘peak vegetation deposition tolerance’ in dune 

environments, which could theoretically be quantified at large enough scales using 

remote sensing. However, values for this deposition tolerance are currently still 

lacking for our study region. We therefore chose to employ the well-tested curves of 

Nield and Baas (2008). In this scheme, grass species experience peak positive xVy< 

(i.e. reduced probability of death) in conditions of net deposition. Neutral or negative 

balances lead to negative xVy< (i.e. increased probability of death) for grasses, due 

to the impact of parasites and soil pathogens (Maun, 1998). Invasive woody shrub 

species prefer less active landscapes than grasses, so xVy< rapidly declines when 

significant erosion or deposition occurs. There is relatively little literature on the 

impact of sedimentation balance on tree growth in drylands, but evidence suggests 

that some sediment accumulation can be beneficial to tree development (e.g. 

Wagner et al., 2013). The growth functions are shown in Figure 1. 

The stress due to grazing (g<) is calculated as a function of the stocking rate on the 

landscape. Since livestock only graze on grasses, but can trample other plants, g< is 

always set to 0.01 for both shrubs and trees. For cells colonised by grasses, g< is 

given as: 

 

g< =
			ÑΩ	,															Ω ≤ 0.06	

0.90,															Ω > 0.06
 

Equation 16 

 

where Ω  is the stocking rate (LSU ha-1) and Ñ  is the slope factor (Ñ  = 15 in the 

present model). 

 

The stress that a plant experiences due to fire (z<) is constant for grasses of all ages, 

due to the high propensity for grassy material to burn at all ages (Danin, 1996), 

whereas it is calculated as an exponential function of cell age (Ç) in the case of 

shrubs and trees: 

 

z< =

0.66,																																							(LM+77)

0.6 V
Háà

																														 7ℎMQR

0.4 V
Háà

																																	 UMVV

 

Equation 17 
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where â controls the saturation rate of the exponential (â = 0.01 in the present model). 

In this way, trees of a given age are more likely to survive a fire than shrubs of the 

same age, as is often the case in the Kalahari (Bhattachan et al., 2014; Dougill et al., 

2016).  

 

Together, all the stresses experienced by a given cell contribute to its total stress 

()<), which determines to probability the cell dies if it is vegetated: 

 

)< = 	 xVy< − 	w< Ç − v< − z< − g< 

Equation 18 

 

)< serves as a critical value against which a uniformly distributed random value (ä) is 

compared. At each timestep, ä is recalculated for each cell. If ä ≤ )<, a dead/empty 

cell becomes occupied (+: 0 → 1) and occupied cells live on (+ = 1), increasing their 

age by the appropriate time unit; if ä > )<, a live cell dies (+: 1 → 0) and an empty cell 

remains empty (+ = 0).  

 

The recolonisation of an empty cell by a particular vegetation type (grass, shrub or 

tree) is determined dynamically, such that the proportion of each vegetation type 

occupying the domain at the end of a given iteration determines the probabilities that 

the vegetation types recolonise a bare cell at the next iteration: 

 

bçs =
(és + ès)

(1 + ès + è< +	èf)
 

Equation 19 

bç< =
(é< + è<)

(1 + ès + è< +	èf)
 

Equation 20 

bçf =
(éf + èf)

(1 + ès + è< +	èf)
 

Equation 21 

 

where bçs, bçf and bç< are the probabilities of recolonisation of an empty cell by a 

grass, tree or shrub, respectively;	és, é< and éf are the current proportions of grass, 

shrub and tree cells (respectively) in the entire model domain; and	ès, è< and èf are 
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multiplicative factors that act to increase or decrease the recolonisation probabilities 

of a grass, shrub or tree, respectively. ès, è< and èf are formulated as a function of 

the precipitation regime (see Mayaud et al., 2017). 

 

1.2. Wind dynamics (Module 2a) 

An unobstructed wind velocity (Qqp/) is derived at each timestep, which represents 

the mean flow over a flat, sandy surface with no elements. The stochastic nature of 

airflow (e.g. Rice et al., 1999; Böhner et al., 2003; Klose and Shao, 2012) is 

introduced by approximating a Gaussian frequency distribution (ê = Qqp/, ë = 0.1), 

from which a wind velocity is randomly chosen for each cell in the domain. This wind 

velocity is further adjusted depending on vegetation morphology and surface 

topography. 

Species type (here grass, shrub, tree) determines whether an element acts to 

increase or decrease wind velocity in the wake. For grasses and shrubs, the surface 

wind velocity in the wake (Qíhq/) is lower than in the absence of plants (Qqp/), and 

exponentially recovers with increasing downwind distance: 

Qíhq/ = (Qqp/ − Q]). (1 − V
H~

&

ì) + Q] 

Equation 22 

where Q]  is the minimum wind velocity in the direct lee of the nearest upwind 

element, &
ì
 is the downwind distance from the nearest element in terms of element 

height, and R  is a fitted coefficient. The coefficient values are based on the 

parameterisation of Mayaud et al. (2016b): 

Q] = Qqp/(0.0146î9h$ − 0.4076) 

Equation 23 

 

R = 	0.0105î9h$ + 0.1627 

Equation 24 

In the case of trees, wind flow in the lee is parameterised using a logistic curve: 
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Qíhq/ = 	0.4V
H
(ìïHñ)

r

5.5; 1 − 	
1

1 +	V
H6

&

ì
H`.6

+ 	1 

Equation 25 

To reflect airflow compression over topography, a speedup/slowdown effect is 

introduced by using an additive factor that scales linearly with the length of a given 

wind path along a slope. The slope-corrected wind velocity (Qíá{óp) for a particular 

cell is dependent on the wind velocity of the upwind cell (Qíhq/[kH5]): 

Qíá{óp = 	Qíhq/[kH5]. W 

W =
(7ì k − 7ì kH5 ). ö,														(7ì k − 7ì kH5 ) ≠ 0

1																																	,									(7ì[k] − 7ì kH5 ) = 0
	 

Equation 26 

where 7ì k  is the surface height of the polled cell, 7ì kH5  is the surface height of the 

upwind cell, and ö is a change coefficient (set at 0.1 in the current model). In order to 

prevent runaway wind velocities, the maximum amount of speedup is limited to 100% 

of the unobstructed wind velocity. 

Continuous wind and transport directions are imposed onto the domain using an 

algorithm described in detail in Mayaud et al. (2017).  

 

1.3. Sediment movement (Module 2b) 

At each iteration of Module 2B, a function is applied to determine how much 

sediment is eroded from each cell. The total amount of sediment eroded from a given 

cell is calculated deterministically as a function of the cell’s wind velocity, using the 

semi-empirical flux relationship of Dong et al. (2003): 

ú = + 1 −
Qj

Q
	
6
	
'

L
Q
; 

Equation 27 
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where ú is the predicted mass flux for the given time interval (kg m-1 s-1), Q is the 

mean horizontal wind velocity over the given time interval (m s-1),	Qj is the horizontal 

wind velocity threshold (m s-1), ' is the density of air (1.25 kg m-3), L is acceleration 

due to gravity (9.81 m s-2), and + is an empirically fitted constant (+ = 0.002, based 

on the field data of Mayaud et al., 2016).  

The flux is converted into an equivalent volumetric flux (m2 s-1), assuming a bulk 

density for sand of 2000 kg m-3 (e.g. Bailey and Thomas, 2014), and from this the 

height of the moving sand volume for a given cell width can be derived. The pe value 

of a polled cell determines the proportion of the sand volume that is actually eroded 

from it; pe varies from 0 to 1 depending on the moisture level of the sediment in the 

cell and its location relative to shadow zones. The final height of the sand volume is 

removed from the polled cell and distributed downwind along a deposition pathway 

specifically calculated for each source cell. 

Transport and deposition in the model occurs stochastically, with each cell being 

characterised by a different pd value. Destination cells already populated with 

sediment are assigned a pd value of 0.7, whilst bare destination cells are assigned a 

lower pd value of 0.4. If a cell is vegetated, the pd value increases proportionally to 

the plant porosity. The total volume eroded from a source cell is divided according to 

the pd of each downwind cell (until a set limit of downwind cells is reached), as well 

as the length of the wind path traversing each downwind cell. Shadow zones exist in 

the lee of topography, such that no erosion (pe = 0) and complete deposition (pd = 1) 

occur in regions within an angle of 15o to the horizontal surface.  

Avalanching occurs in the direction of steepest descent (regardless of vegetation 

occupation status) to enforce an angle of repose, induced by gravity. The angle at 

which avalanching is triggered from the destination cell changes according to the 

vegetation occupation of the cell (30o for a bare sand cell, 40o for a vegetated cell). 

Cells are polled randomly, so as to prevent artefacts propagating across the domain 

as a result of a specific avalanching order.  
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1.4. Model state parameters 

The model state parameters for each experiment presented in this study are 

summarised in Table 1. 

 

2. Climate data 

2.1. Future climate projections 

Projections of changes in the climate system in the IPCC framework are made using 

a hierarchy of climate models (IPCC, 2013). A set of scenarios, termed 

‘representative concentration pathways’ (RCPs), are identified by their approximate 

total radiative forcing in the year 2100 relative to 1750 (IPCC, 2013). Commonly used 

scenarios in environmental modelling studies are RCP 4.5, representing stabilisation 

of greenhouse gas (GHG) emissions, and RCP 8.5, a high GHG emission scenario. 

Therefore, the RCP 4.5 and RCP 8.5 scenarios were chosen for this study. 

There is much debate in the literature concerning how best to combine information 

from different models, which models to include, and the statistics that should be 

presented (Frame et al., 2007; Knutti, 2010; McSweeney & Jones, 2013). However, it 

is generally held that using a range of model projections instead of relying on any 

single model improves the robustness of analysis (Thornton et al., 2011; James & 

Washington, 2012; Whetton et al., 2012). In this study, a subset of three models was 

chosen from the CIP ensembles, based on Dieppois et al.’s (2015) ranking of CMIP5 

model performance over southern Africa: CNRM-CM5, MIROC5 and MRI-CGCM3. 

For each of the three study sites, precipitation and temperature data were averaged 

across the three models at a monthly timestep. 

Figure 2 displays projected changes in annual precipitation over the period 2017–

2100, for all three sites under RCP 4.5 and RCP 8.5. 
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2.2. Verifying climate projections 

Observed climate data can be used to verify modelled historical climate, which in turn 

can inform the reliability of model projections into the future. Figure 3 displays 

modelled and observed precipitation and temperature data (on a monthly timescale) 

for Maun, Tshane and Tsabong over historical periods for which observed data were 

available from the Botswana Department of Meteorological Services. Whilst 

temperature patterns at the three locations were relatively well back-cast (Figure 

3d,e,f), with strong coefficients of determination between observed and modelled 

data (R2 = 0.70–0.84; Figure 3h,j,l), the variability in precipitation data was not so 

well simulated (Figure 3a,b,c), with weak coefficients of determination between 

observed and modelled data (R2 = 0.11–0.20; Figure 3g,i,k). The relatively poor 

representation of past precipitation is a common issue in climate modelling due to 

large uncertainties in the underlying forcing factors (Raisanen, 2007). The ability of 

the chosen models to faithfully replicate past temperature changes provides some 

indication of reliable model performance. The uncertainty in precipitation changes is 

accounted for in our experimental runs by imposing random precipitation variability, 

based on the variability characterising the two decades around each chosen year 

(i.e. 2020–2040, 2050–2070 and 2080–2100).  

 

2.3.  Wind forcing 

Hourly wind velocity data were acquired for Twee Rivieren in the southwest Kalahari, 

based on the availability of long-term wind data available from the Botswana 

Meteorological Service. Wind velocity data at 08:00 (morning), 14:00 (afternoon) and 

20:00 (evening) were selected for each day between 1st January 1994 and 31st 

December 2013. These times were chosen to account for diurnal wind variations. 

Days with missing data points were removed, and the resulting data were grouped by 

season (MAM, JJA, SON and DJF). The distribution of the data in each season was 

assessed using MATLAB’s built-in ‘wblplot’ function, which graphically assesses 

whether the data could come from a Weibull distribution (Figure 4). For each month 

grouping, the maximum likelihood estimates of the 2-parameter Weibull distribution 

were calculated using MATLAB’s built-in ‘wblfit’ function. These are summarised in 

Table 2. Weibull distributions of wind velocity were generated using the parameters 
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for each month grouping, and samples were drawn randomly from the appropriate 

distribution at each model iteration.  

 

3. Vegetation transects 

8 vegetation transects were conducted by R. Bailey & G. Wiggs in September 2010 

to characterise vegetation cover within 150 km of the three study sites (2 transects at 

Maun, 3 transects at Tshane and 3 transects at Tsabong). The vegetation transects 

were 50 m in length and 1 m wide; along each transect the height, basal width and 

canopy width of every plant was recorded at a centimetre-scale resolution. Plants 

were categorised as either herbs and grasses, shrubs or trees. Vegetation 

proportions were calculated by dividing the canopy width for each plant type by the 

total canopy width. Vegetation proportions were then averaged across the 

measurement transects for each site. 

 

4. Oral history of shrub encroachment 

In addition to climate model datasets, oral history data were collected on a farm 

located in the southwest Kalahari Desert, just north of the Auob River. The farm 

extends across approximately 13,000 h.a. of vegetated linear dunes, with a variety of 

dryland grasses, shrubs and trees. The sole current farmer of the property was 

interviewed informally over a period of several weeks in the period August–October 

2014 and in September 2016. 

In the 1980s, the farmer recalls a landscape much more populated by grasses than 

shrubs. Whilst wild game moved through in large numbers, placing pressure on the 

vegetation system, their manure and urine helped to fertilise the land and contributed 

to rapid grass recolonisation. The lack of human management of wildfires (which are 

mainly caused by lightning in this region) also helped to maintain low shrub 

populations. From the 1990s onwards, the region experienced increased agricultural 

intensification and fence construction for wildfire control. This led to greater grazing 

pressures and severe shrub encroachment in some areas. Whereas most dunes 

were covered with grasses ~40 years ago, according to the farmer, much of the 
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heavily grazed farmland now consists of bare, intermittently active dune crests. The 

region’s strong northeasterly winds result in a relatively slow southwesterly migration 

of the most denuded dunes. 

In an attempt to reverse shrub encroachment on his land, the farmer started using 

herbicide that targets shrubs only (known as ‘de-bushing’; Reed et al., 2015), and 

allows grasses to dominate the system within 2–3 years. On this particular farm, the 

application of herbicide in late 2009 resulted in the widespread replacement of 

Rhigozum trichotomum woody shrubs (Figure 5a) with perennial grasses such as 

Stipagrostis amabilis and Stipagrostis uniplumis (Figure 5b,c). 

 

5. Impact of precipitation variability 

Bailey (2011) showed that conditions of fluctuating generic stress can result in 

readjustments of vegetation patterns over time, and that the magnitude of stress 

variability can impact post-perturbation recovery in semi-arid systems. It is therefore 

important to investigate the impact of precipitation variability on landscape response 

within the fully-coupled ViSTA model. Variability was imposed by randomly sampling 

precipitation from a normal distribution around a series of idealized precipitation 

scenarios: no trend (Figure 6), v-shaped trend (Figure 6), decreasing trend (Figure 

7), and increasing trend (Figure 8). For each scenario, no variability, low variability 

(standard deviation, ë = 50 mm annual equivalent) and high variability (ë = 100 mm 

annual equivalent) conditions were imposed, based on realistic variabilities observed 

in historical data at our study sites.  

In the no-trend scenario (Figure 6), a lack of variability resulted in a baseline 

‘equilibrium’ state of high, non-patterned vegetation cover, with stable proportions of 

grass, shrubs and trees. The addition of variability led to pattern formation, with more 

dramatic population declines at high variability, and grass:shrub ratios that fluctuated 

significantly. In the v-shaped trend scenario (Figure 6), distinct labyrinthine patterns 

emerged as vegetation cover declined in response to decreasing precipitation. 

Variability in the precipitation signal resulted in a less rapid, predictable decline than 

the no-variability case, because occasional peaks in precipitation helped to rapidly 

repopulate existing vegetation patches. In the decreasing trend scenario (Figure 7), 

greater variability led to an earlier decline in population density, as well as an earlier 
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appearance of patterning (by up to ~60 years) At low average precipitation levels, 

occasional peaks result in grasses and shrubs to grow rapidly (occasionally to cover 

of 60–90%), but these die off quickly in subsequent low-precipitation years. 

Conversely, in the increasing trend scenario (Figure 8), the presence of variability 

allowed grasses to establish quickly in response to vegetation peaks and, eventually, 

to form viable patches earlier than in the no-variability case. An intermediate level of 

variability provided the best conditions for vegetation regrowth, possibly because 

high variability leads to occasional precipitation lows that drive the vegetation system 

back down its recovery trajectory. Greater fluctuations in grass:shrub ratios in the 

high variability case suggest that the system may be closer to flipping to a shrub-

encroached landscape. 

 

6. Equilibrium conditions 

In addition to the equilibrium landscape characteristics presented in the main 

manuscript, Figure 9 displays normalised plant ages at the chosen years across all 

three sites. At Maun, for both variability scenarios and both RCPs, grasses and 

shrubs on average live increasingly longer until 2060, then experience a decline in 

age at 2090. Trees tend to live longer as the century progresses. At Tshane, in most 

cases grasses and shrubs tend to live longer throughout the century than in 2000, 

particularly in the RCP 8.5 scenario. Average ages for trees do not tend to vary as 

strongly. At Tsabong, a clear decreasing trend in average ages for grasses and 

shrubs is evident for RCP 8.5, but for RCP 4.5 high variability leads to an increase in 

average ages in 2090. Trees do not experience a significant change in average age. 

The strength of the feedbacks between sediment movement and vegetation growth 

can be modified depending on the plant types and environments. Figure 10 shows 

the effect of varying the ‘sediment importance factor’ in the ViSTA model. This 

multiplicative factor changes the weighting of the sediment stress (xVy< ) in the 

formulation for the total stress ()< ) (see Equation 18). The sediment importance 

factor is at least greater than zero (i.e. the movement of sediment must have at least 

some impact on vegetation growth), but its upper bound is poorly constrained by a 

lack of appropriate experimental data. The sediment importance factor affects the 

population density (Figure 10a), average sediment transport (Figure 10b) and 
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grass:shrub ratios (Figure 10c) at equilibrium. These landscape characteristics do 

not change linearly with the value of the factor, demonstrating the potential existence 

of several equilibria that depend on sediment feedback strength.  

Figure 11 shows results from two additional equilibrium experiments. Summer (DJF) 

rainfall was varied between 80–120 mm yr-1 to verify the impact on grass:shrub ratio 

and population density in equilibrium state (Figure 11a). As summer rainfall 

increases, population density increases whilst grass:shrub ratios decline (i.e. greater 

shrub encroachment). This occurs because of more favourable conditions for shrub 

establishment over grasses. The effect of varying fixed shrub porosities on total 

sediment transport is shown in Figure 11b. Although there is significant seasonal 

variability in transported sediment due to seasonal vegetation cover, sediment 

transport is greater when the model is populated with high-porosity (90%) shrubs 

compared with low-porosity (10%) shrubs. A landscape composed of intermediately 

porous shrubs (50%) experiences the lowest sediment transport rates, reflecting 

findings that intermediately porous elements strike a compromise between the 

strength of their sheltering effect and the downwind distance over which it is effective 

(Musick et al., 1996; Lee et al., 2002; Mayaud et al., 2016c). 

 

7. Additional references 

Bailey, R.M. & Thomas, D. S. G. A quantitative approach to understanding dated dune 
stratigraphies. Earth Surf. Proc. Land, 39, 614–631 (2014). 

Barchyn, T.E. & Hugenholtz, C.H. Aeolian dune field geomorphology modulates the 
stabilization rate imposed by climate. J. Geophys. Res. Earth Surf., 117, F02035 (2012).   

Barchyn, T.E. & Hugenholtz, C.H. Predictibility of dune activity in real dune fields under 
unidirectional wind regimes. J. Geophys. Res. Earth Surf., 120, 159–182 (2015).   

Bhattachan, A., D’Odorico, P., Dintwe, K., Okin, G.S. & Collins, S.L. Resilience and recovery 
potential of duneland vegetation in the southern Kalahari. Ecosphere, 5, 1–14 (2014). 

Böhner, J., Schäfer, W., Conrad, O., Gross, J. & Ringeler, A. The WEELS model: Methods, 
results and limitations. Catena, 52, 289–308 (2003). 

Danin, A. Plants of Desert Dunes, Springer Verlag, Berlin (1996). 

Duran, O. & Hermann, H.J. Vegetation against dune mobility. Phys. Rev. Lett., 92, 188001 
(2006).  

Erickson, R.O. Modeling of plant growth. Ann. Rev. Plant. Phys., 27, 407–434 (1976). 



 

 

18 

Frame, D.J. et al. Probabilistic climate forecasts and inductive problems. Phil. Trans. Royal. 
Soc. A., 365, 1971–1992 (2007). 

Klose, M. & Shao, Y. Stochastic parameterization of dust emission and application to 
convective atmospheric conditions. Atmos. Chem. Phys., 12, 7309–7320 (2012). 

Knutti, R. The end of model democracy? Clim. Change, 102, 395–404 (2010). 

Mayaud, J.R., Bailey, R.M., Wiggs, G.F.S. & Weaver, C.M. Modelling aeolian sand transport 
using a dynamic mass balancing approach. Geomorphology, 280, 108–121 (2016).  

McSweeney, C.F. & Jones, R.G. No consensus on consensus: the challenge of finding a 
universal approach to measuring and mapping ensemble consistency in GCM projections. 
Clim. Change, 119, 617–629 (2013). 

Nield, J.M. & Baas, A.C.W. Investigating parabolic and nebkha dune formation using a 
cellular automaton modelling approach. Earth Surf. Proc. Land., 33, 724–740 (2008). 

Raisanen, J. How reliable are climate models? Tellus, 59, 2–29 (2007). 

Rice, M.A., McEwan, I.K. & Mullins, C.E. A conceptual model of wind erosion of soil surfaces 
by saltating particles. Earth Surf. Proc. Land., 24, 383–392 (1999). 

Wand, S.J.E. A preliminary study of the responsiveness to seasonal atmospheric and rainfall 
patterns of wash woodland species in the arid Richtersveld. Plant Ecol., 142, 149–160 (1999). 

Wagner, B., de Leeuw, J., Njenga, M., Iiyama, M. & Jamnadass, R. Towards Greater 
Resilience in the Drylands: Trees Are the Key, Nairobi, Kenya (2013). 

Whetton, P. et al. Use of Representative Climate Futures in impact and adaptation 
assessment. Clim. Change, 115, 433–442 (2012). 

 



 

 

19 

 

 

 

 

 

 

 

FIGURES 

 

 

 

 

 

 

 

 

 

 



 

 

20 

 

Figure 1 Functions for stress due to sedimentation balance (xVy<), representing the annual response to 
burial and/or erosion conditions for the different vegetation types (adapted from Nield and Baas, 2008a, 
p.731). 
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Figure 2 Projected changes in average maximum daily temperature over the period 2017–2100, for 
Maun, Tshane and Tsabong, under the RCP 4.5 and RCP 8.5 scenarios. Dotted red lines show linear 
best fit trends. 
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Figure 3 Modelled and observed total monthly precipitation for (a) Maun, (b) Tshane, and (c) Tsabong, over periods for which observed data were available (missing data are 
shown as gaps). Modelled and observed average maximum daily temperature for (d) Maun, (e) Tshane, and (f) Tsabong. Observed vs modelled temperature and precipitation 
for (g, h) Maun, (i,j) Tshane, (k, l) Tsabong, and (g, h) Tshane. R2 coefficients of determination and lines of best fit are shown. 
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Figure 4 Weibull distributions of wind velocities recorded at Twee Rivieren at 08:00, 14:00 and 20:00 
over the period 1994–2013, grouped by season. 
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Figure 5 The replacement of woody shrubs by perennial grasses following herbicide 
application (‘de-bushing’): (a) shrub-dominated system in early 2010, a few months 
after application; (b) grass-dominated system a few years later; (c) close-up of 
Stipagrostis amabilis grasses that emerged after de-bushing. Photos: P. Möller (25.50

o
 

S, 19.73
o
 E). 
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Figure 6 Effect of rainfall variability on population density and proportions of vegetation types, for two rainfall scenarios: (1) no trend in rainfall (constantly 100 mm yr-1), and 
(2) v-shaped rainfall (decreasing from 400 mm yr-1 to 0 mm yr-1 before increasing back to 400 mm yr-1). For both scenarios, three rainfall variability cases were imposed: (1) 
no variability, (2) normally-distributed variability with a standard deviation of 50 mm yr-1 (annual equivalent), and (3) normally-distributed variability with a standard deviation 
of 100 mm yr-1. For all cases, model was run for 250 years, with vegetation updated every 3 months (the rainfall in the grey panels is given as an annual rainfall equivalent 
for each 3-month iteration). At the start of each run, the model was initiated with approximate equilibrium proportions of grasses, shrubs and trees (as derived by Mayaud et 
al. 2017). Inset panels show spatial distributions of vegetation heights across the domain at 75, 150 and 225 model years. 
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Figure 7 Effect of rainfall variability on population density and proportions of vegetation types, for a scenario of decreasing rainfall (from 200 mm yr-1 to 0 mm yr-1. Three 
rainfall variability cases were imposed: (1) no variability, (2) normally-distributed variability with a standard deviation of 50 mm yr-1 (annual equivalent) and (3) normally-
distributed variability with a standard deviation of 100 mm yr-1. For all cases, model was run for 250 years, with vegetation updated every 3 months (the rainfall in the grey 
panels is given as an annual rainfall equivalent for each 3-month iteration). At the start of each run, the model was initiated with approximate equilibrium proportions of 
grasses, shrubs and trees (as derived by Mayaud et al., 2017). Panels show spatial distributions of vegetation heights at selected years spanning the observed collapse 
in population density (marked as dotted lines on population density graphs). 
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Figure 8 Effect of rainfall variability on population density and proportions of vegetation types, for a scenario of inccreasing rainfall (from 0 mm yr-1 to 200 mm yr-1. 
Three rainfall variability cases were imposed: (1) no variability, (2) normally-distributed variability with a standard deviation of 50 mm yr-1, and (3) normally-
distributed variability with a standard deviation of 100 mm yr-1. For all cases, model was run for 250 years, with vegetation updated every 3 months (the rainfall in 
the grey panels is given as an annual rainfall equivalent for each 3-month iteration). At the start of each run, the model was initiated with approximate equilibrium 
proportions of grasses, shrubs and trees (as derived by Mayaud et al., 2017). Panels show spatial distributions of vegetation heights at selected years spanning 
the observed collapse in population density (marked as dotted lines on population density graphs). 
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Figure 9 Equilibrium normalised annual average plant age for grasses (Gr), shrubs (Sh) and trees (Tr) at the three chosen years (2030, 2060 and 2090), normalised to the 
baseline year (2000, RCP 4.5), at the three study sites. Results are shown for RCP 4.5 and RCP 8.5 scenarios, in low variability (standard deviation, ! = 30 mm annual 
equivalent) and high variability (! = 160 mm annual equivalent) precipitation conditions. Model was run to equilibrium for the equivalent of 200 model years, with 20 wind 
events every 3 months, over a grid of 150 x 150 cells. The domain was randomly initiated with 90% vegetation cover and random sediment depth. Average ages were 
calculated as means over the last 10 years of each run. Error bars show coefficients of variation (thus partly representing seasonal variations). 
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Figure 10 Effect of varying the sediment importance factor on: (a) average population density; (b) average transported sediment; (c) grass:shrub ratio, where values 
above unity represent grass dominance. Model was run to equilibrium for the equivalent of 100 model years, with precipitation conditions for year 2030 (RCP 4.5) at 
Tsabong, over a grid of 150 x 150 cells. 10 wind events of constant wind velocity (7 m s-1; threshold for entrainment = 5 m s-1) occurred every 3 months. The domain was 
randomly initiated with 90% vegetation cover and random sediment depth. Average statistics were calculated as means over the last 10 years of each run. Error bars 
show standard deviations (thus partly representing seasonal variations). 
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Figure 11 (a) Impact of varying summer (DJF) rainfall on grass:shrub ratios (grey bars) and population density (black line). Model was run to equilibrium for the equivalent 
of 100 model years, over a grid of 150 x 150 cells, with MAM, JJA and SON precipitation conditions for year 2030 (RCP 4.5) at Tsabong, and DJF rainfall was varied 
between 80 mm yr-1 and 120 mm yr-1. The domain was randomly initiated with 90% vegetation cover and no sediment transport was simulated; (b) Impact of varying fixed 
shrub porosity on total sediment transport across the domain. Model was run to equilibrium for the equivalent of 100 model years, with precipitation conditions for year 
2030 (RCP 4.5) at Tsabong, over a grid of 150 x 150 cells. 10 wind events of constant wind velocity (7 m s-1; threshold for entrainment = 5 m s-1) occurred every 3 
months. The domain was randomly initiated with 90% vegetation cover and random sediment depth. In both figures, error bars show standard deviations (thus partly 
representing seasonal variations), and average statistics were calculated as means over the last 10 years of each run. 
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 Tables 

 

 

 

 

Months Number of usable 
data points 

Weibull shape 
parameter (!) 

Weibull scale 
parameter (") 

MAM 5378 1.67 3.24 

JJA 5232 1.65 3.42 
SON 5183 1.75 3.78 

DJF 5188 1.87 3.64 

Table 2 Number of usable data points (over the period 1994–2013), and maximum likelihood 
estimates of the 2-parameter Weibull distribution, for each month grouping. 

Experiment 
(related 
figure) 

No of 
repeats RCP Modelled 

years 
Veg. 

update 
interval 

Wind 
freq. 

Grid 
length 

(m) 

Cell 
size 
(m) 

Equilibrium 
runs  

(Fig. 3,  
Supp. Fig. 8) 

Equilibrium 
(200 yrs) 

4.5, 
8.5 

2000, 
2030, 
2060, 
2090 

3 
months 

20 
events / 

3 months 
150 1 

Transient runs 
(Fig. 4) 

10 per 
site/RCP 

4.5, 
8.5 

1960 – 
2100 

3 
months 

20 
events / 

3 months 
150 1 

Fire/grazing 
runs 

(Fig. 5, Fig. 6) 

3 per 
site/RCP 4.5 1960–

2100 
3 

months 

20 
events / 

3 months 
150 1 

Rainfall 
variability runs 
(Supp. Fig. 5, 
Supp. Fig. 6, 
Supp. Fig. 7) 

Single  
(250 yrs) - - 3 

months - 100 1 

Table 1 Summary of model state parameters for the experiments presented in this study. 


